The Littlewood-Richardson rule and the boson-fermion correspondence

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 28 L331
(http://iopscience.iop.org/0305-4470/28/12/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 00:14

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The Littlewood-Richardson rule and the boson-fermion correspondence

T H Baker
Physics Department, University of Tasmania, GPO Box 252C Hobart, Australia 7001

Received 3 January 1995

Abstract

The boson-fermion correspondence is applied to derive explicit formulae for expressing the product of S-functions in terms of sums of S-functions associated to non-standard partitions.

In this letter we show how to derive fairly explicit formulae for the multiplication of two S-functions in terms of S-functions with non-standard partitions by means of the bosonfermion correspondence. We also point out how this method can be used to calculate skew S-functions, and also how to extend it to the Hall-Littlewood case. The boson-fermion correspondence (or its generalizations) has been used, for example, in investigating various identities of S-functions [1], Q-functions [2,3] and Hall-Littlewood functions [4] as well as in deriving a procedure for calculating S-function (outer) plethysms [5].

Let us briefly summarize the boson-fermion correspondence as it pertains to S-functions. The algebra \mathcal{A} of free fermions is generated by $\psi_{i}, \psi_{i}^{*}, i \in \mathbb{Z}$ satisfying the anti-commutation relations

$$
\begin{equation*}
\left\{\psi_{i}, \psi_{j}\right\}=0=\left\{\psi_{i}^{*}, \psi_{j}^{*}\right\} \quad\left\{\psi_{i}, \psi_{j}^{*}\right\}=\delta_{i j} \tag{1}
\end{equation*}
$$

There is a Fock representation \mathcal{F} of this algebra with a vacuum $|0\rangle$ which satisfies

$$
\psi_{i}|0\rangle=0(i<0) \quad \psi_{i}^{*}|0\rangle=0(i \geqslant 0)
$$

The states in the fermionic Fock space can be naturally associated to S-functions in the following manner: let α_{0} and q be operators satisfying $\left[q, \alpha_{0}\right]=\mathrm{i}$ and let them act on the space $\oplus_{k \in \mathcal{Z}} \mathrm{e}^{\mathrm{i} k q}$ according to

$$
\begin{equation*}
\alpha_{0} \mathrm{e}^{i k q}=k \mathrm{e}^{\mathrm{i} k q} \quad \mathrm{e}^{\mathrm{i} q} \mathrm{e}^{\mathrm{i} k q}=\mathrm{e}^{\mathrm{i}(k+1) q} . \tag{2}
\end{equation*}
$$

If $\Lambda(x)$ denotes the space of symmetric polynomials in the indeterminates $\left(x_{1}, x_{2}, \ldots\right)$, then define vertex operators acting on $\bar{\Lambda}=\Lambda(x) \otimes\left(\oplus_{k \in \mathbb{Z}} \mathrm{e}^{\mathrm{i} k q}\right)$ by

$$
\begin{align*}
& \psi(z)=\exp \left(\sum_{n=1}^{\infty} \frac{p_{n}(x)}{n} z^{n}\right) \exp \left(-\sum_{n=1}^{\infty} \frac{\partial}{\partial p_{n}(x)} z^{-n}\right) \mathrm{e}^{\mathrm{i} q} z^{\alpha_{0}} \\
& \psi^{*}(z)=\exp \left(-\sum_{n=1}^{\infty} \frac{p_{n}(x)}{n} z^{n}\right) \exp \left(\sum_{n=1}^{\infty} \frac{\partial}{\partial p_{n}(x)} z^{-n}\right) z^{-\alpha_{0}} \mathrm{e}^{-\mathrm{i} q} \tag{3}
\end{align*}
$$

where $p_{n}(x)=\sum_{i} x_{i}^{n}$ are power sum symmetric functions. (For notational simplicity, we drop the symbol \otimes in these and subsequent formulae.) If the modes of these vertex operators are given by the expansion

$$
\psi(z)=\sum_{n \in \mathbb{Z}} \psi_{n} z^{n} \quad \psi^{*}(z)=\sum_{n \in \mathbb{Z}} \psi_{n}^{*} z^{-n}
$$

then it is well known [6] that the modes ψ_{n}, ψ_{n}^{*} satisfy the anti-commutation relations of the free fermion algebra (1). Moreover, there is an isomorphism $\varrho: \mathcal{F} \rightarrow \bar{\Lambda}$ which associates every state $a|0\rangle, a \in \mathcal{A}$ in the fermionic Fock space such that $\varrho(\mid 0\})=1$, and if $0 \leqslant i_{s}<\cdots<i_{1}, 0<j_{r}<\cdots<j_{1}$, then [6]

$$
\begin{equation*}
\varrho\left(\psi_{-j_{1}}^{*} \cdots \psi_{-j_{r}}^{*} \psi_{i_{s}} \cdots \psi_{i_{1}}|0\rangle\right)=(-1)^{j_{1}+\cdots j_{r}+\Gamma(l-1) / 2} s_{\lambda}(x) \mathrm{e}^{i l q} \tag{4}
\end{equation*}
$$

where $l=s-r$ and λ is a partition of the form
$\lambda=\left(i_{1}+1-l, i_{2}+2-l, \ldots, i_{s}+s-l, r^{j_{r}-1},(r-1)^{j_{r-1}-j_{r}-1}, \ldots, 2^{j_{2}-j_{j}-1}, 1^{j_{i}-j_{2}-1}\right)$.

In what follows, we shall often ignore the momentum factor $\mathrm{e}^{i / q}$ occurring in (4).
Let us begin with the Pieri formula for the multiplication of an S-function by a complete symmetric function $h_{n} \equiv s_{(n)}$, which takes the form [7]

$$
\begin{equation*}
h_{n} s_{\mu}=\sum_{\lambda} s_{\lambda} \tag{6}
\end{equation*}
$$

where the sum is over all partitions λ such that $\lambda-\mu$ is a horizontal n-strip. That is, the partitions λ occurring in the above product are those obtained by adding n extra boxes to the diagram μ in any manner provided that the resulting diagram is a valid diagram, and no two of the added boxes lie in the same column.

The question we can ask ourselves is how can we turn multiplication by h_{n} into an operation involving free fermions? The answer comes from the generating function for h_{n} which we can write as

$$
R(z)=\sum_{p=0}^{\infty} h_{p} z^{p}=\exp \left(\sum_{n \geqslant 1} \frac{p_{n}}{n} z^{n}\right)=\psi(z) \eta(z)
$$

where

$$
\eta(z)=\exp \left(\sum_{n \geqslant 1} \frac{\partial}{\partial p_{n}} z^{-n}\right) z^{-\alpha_{0}} e^{-i q} .
$$

Thus, when we multiply an S-function, represented by a product of free fermionic currents, by the function h_{n}, represented by the current $R(z)$, we can shuffle the (annihilation) operator $\eta(z)$ through the currents $\psi(w)$ using the relation

$$
\begin{equation*}
\eta(z) \psi(w)=\left(\frac{w / z}{1-w / z}\right) \psi(m) \eta(z) \tag{7}
\end{equation*}
$$

which will then hit the vacuum, leaving us with an expression involving just free fermions. As an example, let us look at the product $h_{k} s_{(n, m)}$. We know that $s_{(n, m)}=\varrho\left(\psi_{n+1} \psi_{m}|0\rangle\right)$, so that (dropping the $\varrho(\cdot)$ for simplicity)

$$
\begin{aligned}
h_{k} s_{(n, m)}= & \frac{1}{2 \pi \mathrm{i}} \oint \frac{\mathrm{~d} z \mathrm{~d} w_{1} \mathrm{~d} w_{2}}{z w_{1} w_{2}} z^{-k} w_{1}^{-n-1} w_{2}^{-m} R(z) \psi\left(w_{1}\right) \psi\left(w_{2}\right)|0\rangle \\
= & \frac{1}{2 \pi \mathrm{i}} \oint \frac{\mathrm{~d} z \mathrm{~d} w_{1} \mathrm{~d} w_{2}}{z w_{1} w_{2}} z^{1-k} w_{1}^{-n-1} w_{2}^{-m} \frac{w_{1} / z}{1-w_{1} / z} \frac{w_{2} / z}{1-w_{2} / z} \\
& \times \psi(z) \psi\left(w_{1}\right) \psi\left(w_{2}\right) \mathrm{e}^{-\mathrm{i} q}|0\rangle \\
= & \sum_{i, j \geqslant 1} \psi_{k-1+i+j} \psi_{n+1-i} \psi_{m-j} \mathrm{e}^{-\mathrm{i} q}|0\rangle
\end{aligned}
$$

where the contours in the above integrals circle the origin. The upper limits of this last sum are constrained by the fact that $\mathrm{e}^{-\mathrm{i} q}|0\rangle=\psi_{-1}^{*}|0\rangle$, so that $\psi_{p} \mathrm{e}^{-\mathrm{i} q}|0\rangle=0$ if $p \leqslant-1$. Thus, we finally obtain

$$
\begin{equation*}
h_{k} s_{(n, m)}=\sum_{i=-1}^{n} \sum_{j=0}^{m} s_{(n+m+k-i-j, i, j)} \tag{8}
\end{equation*}
$$

where the expression on the right-hand side involves non-standard S-functions which can be turned into standard S-functions using the modification rules
(i) $s_{\left(\lambda_{1}, \ldots, \lambda_{r}, \lambda_{i+1}, \ldots, \lambda_{f}\right)}=-s_{\left(\lambda_{1}, \ldots, \lambda_{i+1}-1, \lambda_{i}+1, \ldots, \lambda_{r}\right)}$,
(ii) if $\lambda_{i+1}=\lambda_{i}$ for any i then $s_{\lambda}=0$,
(iii) if the last part $\lambda_{p}<0$ then $S_{\lambda=0}$.

For k smaller than m or n, many terms on the right-hand side of (8) cancel amongst themselves, so that in this particular case, it is not a very efficient formula. However, we shall soon derive a formula which is more efficient when k is small. This method can be extended to the general case, given by the combinatorial expression (6), with the result being

$$
\begin{equation*}
h_{k} s_{\left(n_{1}, \ldots, n_{p}\right)}=\sum_{i_{1}=1}^{n_{1}+p} \sum_{i_{2}=1}^{n_{2}+p-1} \cdots \sum_{i_{p}=1}^{n_{p}+1} s_{\left(k-p+i_{1}+\cdots+i_{p}, n_{1}+1-i_{1}, \ldots, n_{p}+1-i_{p}\right)} \tag{9}
\end{equation*}
$$

In the case of the product of a complete symmetric function and a one-hook S-function, we can use the exchange relation

$$
\eta(z) \psi^{*}(w)=\left(\frac{z}{w}-1\right) \psi^{*}(w) \eta(z)
$$

to show that
$h_{n} s_{(a \mid b-1)}=s_{(a+n \mid b-1)}+s_{(n+a-1 \mid b)}+\sum_{i=1}^{a}\left(s_{(n+i-1, a-i \mid b-1,0)}+s_{(n+i-2, a-i \mid b, 0)}\right)$.
For $n \geqslant a$ the partitions in the above expression are standard, and the result could also have been derived easily by adding n boxes to the hook diagram $(a \mid b)$ in the prescribed manner.

When $n<a$, the terms on the right-hand side start cancelling each other out. Again, we will be able to derive a more efficient expression for this case.

We would now like to start multiplying S-functions on the left by the two-part S-function $s_{(n, m)}$. The generating function for these S-functions takes the form

$$
R\left(z_{1}, z_{2}\right)=\sum_{n, m \geqslant 0} s_{(n, m)} z_{1}^{n} z_{2}^{m}=\left(1-\frac{z_{2}}{z_{1}}\right) \exp \left(\sum_{k \geqslant 1} \frac{p_{k}}{k}\left(z_{1}^{k}+z_{2}^{k}\right)\right) .
$$

Again, we can decompose this into free fermionic currents and an annihilation operator. Indeed,

$$
R\left(z_{1}, z_{2}\right)=\psi\left(z_{1}\right) \psi\left(z_{2}\right) \eta\left(z_{1}, z_{2}\right)
$$

where

$$
\eta\left(z_{1}, z_{2}\right)=\exp \left(\sum_{n \geqslant 1} \frac{\partial}{\partial p_{n}}\left(z_{1}^{-n}+z_{2}^{-n}\right)\right) z_{1}^{-\alpha_{0}-1} z_{2}^{-\alpha_{0}} \mathrm{e}^{-2 i q}
$$

Using the exchange relation

$$
\eta\left(z_{1}, z_{2}\right) \psi(w)=\left(\frac{w / z_{1}}{1-w / z_{1}}\right)\left(\frac{w / z_{2}}{1-w / z_{2}}\right) \psi(w) \eta\left(z_{1}, z_{2}\right)
$$

we can follow the previous example and show that

$$
\begin{equation*}
s_{(n, m)} h_{k}=\sum_{i=1}^{k+1} \sum_{j=1}^{k+2-i} s_{(n+i-1, m+j-1, k+2-i-j)} \tag{11}
\end{equation*}
$$

which is a more efficient expression than (8) for small k. In a similar manner, one can derive the result
$s_{(n, m)} s_{(p, q)}=\sum_{i_{1}=1}^{p+2} \sum_{i_{2}=1}^{p+3-i_{1}} \sum_{i_{3}=1}^{q+1} \sum_{i_{4}=1}^{q+2-s_{3}} s_{\left(i_{1}+i_{3}+n-2, i_{2}+i_{4}+m-2, p+2-i_{1}-i_{2}, q+2-i_{3}-i_{4}\right)}$.
Generally, we can consider multiplication on the left by the general S-function $s_{\left(n_{1}, \ldots, n_{p}\right)}$ through the use of the generating function

$$
R\left(z_{1}, \ldots, z_{p}\right)=\sum_{n_{1}, \ldots, n_{p} \geqslant 0} s_{\left(n_{1}, \ldots, n_{p}\right)} z_{1}^{n_{1}} \cdots z_{p}^{n_{p}}=\prod_{i<j}\left(1-\frac{z_{j}}{z_{i}}\right) \exp \left(\sum_{k \geqslant 1} \frac{p_{k}}{k}\left(z_{1}^{k}+\cdots+z_{p}^{k}\right)\right)
$$

This allows us to write

$$
R\left(z_{1}, \ldots, z_{p}\right)=\psi\left(z_{1}\right) \cdots \psi\left(z_{p}\right) \eta\left(z_{1}, \ldots, z_{p}\right)
$$

where

$$
\eta\left(z_{1}, \ldots, z_{p}\right)=\exp \left(\sum_{n \geqslant 1} \frac{\partial}{\partial p_{n}}\left(z_{1}^{-n}+\cdots+z_{p}^{-n}\right)\right) z_{1}^{-\alpha_{0}-p+1} \cdots z_{p}^{-\alpha_{0}} \mathrm{e}^{-p \mathrm{iq}} .
$$

Thus, by using the relation

$$
\eta\left(z_{1}, \ldots, z_{p}\right) \psi(w)=\prod_{j=1}^{p}\left(\frac{w / z_{j}}{1-w / z_{j}}\right) \psi(w) \eta\left(z_{1}, \ldots, z_{p}\right)
$$

we obtain the result
$s_{\left(n_{1}, \ldots, n_{p}\right)} h_{k}=\sum_{i_{1}=1}^{k+1} \sum_{i_{2}=1}^{k+2-i_{1}} \cdots \sum_{i_{p}=1}^{k+p-i_{1} \ldots \ldots-i_{p-1}} s_{\left(i_{1}+n_{1}-1, i_{2}+n_{2}-1, \ldots, i_{p}+n_{p}-1, k+p-i_{1} \ldots \ldots-i_{p}\right)}$.
By proceeding in the above manner, we can derive the general result

$$
\begin{equation*}
s_{\left(m_{1}, \ldots, m_{q}\right)} s_{\left(n_{1}, \ldots, n_{r}\right)}=\sum_{[i]} s_{\lambda_{i}} \tag{14}
\end{equation*}
$$

where λ_{i} is a (non-standard) partition of length $p+q$ of the form

$$
\begin{gathered}
\lambda_{i}=\left(m_{1}-p+i_{11}+i_{21}+\cdots+i_{p 1}, \cdots, m_{q}-p+i_{1 q}+\cdots+i_{p q}, n_{1}+q-i_{11}-\cdots\right. \\
\left.-i_{1 q}, \cdots, n_{p}+q-i_{p 1}-\cdots-i_{p q}\right)
\end{gathered}
$$

and the $p q$ indices $i_{a b}$, where $1 \leqslant a \leqslant p, 1 \leqslant b \leqslant q$, in the above sum are subject to the constraints

$$
\begin{equation*}
1 \leqslant i_{a b} \leqslant n_{a}+p-a+b-\sum_{k=1}^{b-1} i_{a k} . \tag{15}
\end{equation*}
$$

When $b=1$, the finite sum in (15) is taken to be zero. Although this is a very explicit expression for the product of two S-functions in terms of S-functions of non-standard partitions, it is very inefficient when it comes to actual computations. More efficient expressions can be obtained when one switches to Frobenius notation and considers products of hook S-functions.

As an example, let us consider multiplication on the left by one-hook S-functions. They have the generating function
$H(z ; w)=\sum_{n, m \geqslant 0} s_{(n \mid m-1)} z^{n}(-w)^{m}=\frac{1}{1-z / w} \exp \left(\sum_{k \geqslant 1} \frac{p_{k}}{k}\left(z^{k}-w^{k}\right)\right)$.
That is

$$
H(z ; w)=\psi^{*}(w) \psi(z) \tau(z ; w)
$$

where

$$
\tau(z ; w)=\left(\frac{w}{z}\right)^{\alpha_{0}} \exp \left(\sum_{k \geqslant 1} \frac{\partial}{\partial p_{k}}\left(z^{-k}-w^{-k}\right)\right) .
$$

Upon using

$$
\begin{equation*}
\tau(z ; w) \psi(y)=\left(\frac{w-y}{z-y}\right) \psi(y) \tau(z ; w) \tag{17}
\end{equation*}
$$

we see that

$$
\begin{equation*}
s_{(n \mid m-1)} h_{p}=\sum_{i=0}^{p} s_{\left(n+1+i, p+1-i, 1^{m-2}\right)}+\sum_{i=0}^{p-1} s_{\left(n+1+i, p-i, 1^{m-1}\right)} \tag{18}
\end{equation*}
$$

which is a more efficient version of (10) in the case when p is small.
Note that, until now, we have not found it necessary to use the anti-commutation relations for free fermions. As a final example of the method described above, and one in which the anti-commutation relations are needed, let us consider the product of two onehook S-functions. By using the generating function (16), along with the exchange relation (17) and

$$
\begin{equation*}
\tau(z ; w) \psi^{*}(y)=\left(\frac{z-y}{w-y}\right) \psi^{*}(y) \tau(z ; w) \tag{19}
\end{equation*}
$$

we see that

$$
\begin{aligned}
(-1)^{m+q} S_{(n \mid m-1)} s_{(p \mid q-1)}=\sum_{i, j \geqslant 0}\left(\psi_{-m-i}^{*} \psi_{n+j} \psi_{-q+i}^{*} \psi_{p-j}-\psi_{-m-i}^{*} \psi_{n+j+1} \psi_{-q+i+1}^{*} \psi_{p-j}\right. \\
\left.-\psi_{-m-i-1}^{*} \psi_{n+j} \psi_{-q+i}^{*} \psi_{p-j-1}+\psi_{-m-i-1}^{*} \psi_{n+j+1} \psi_{-q+i+1}^{*} \psi_{p-j-1}\right)|0\rangle
\end{aligned}
$$

Consider for a moment the first term in the above expression; for it to be non-zero we require $0 \leqslant j \leqslant q$. We also require that either $0 \leqslant i \leqslant q-1$ or $i=p+q-j$. In this latter case, we must use the relation $\left\{\psi_{i}^{*}, \psi_{i}\right\}=1$ to remove the annihilation operator ψ_{p-j}^{*}, yielding the term $\sum_{j=0}^{p} \psi_{-m-p-q+j}^{*} \psi_{n+j}|0\rangle$. After treating the other terms in a similar fashion, and gathering like terms, we obtain

$$
\begin{align*}
s_{(n \mid m \sim 1)} s_{(p \mid q-1)} & =s_{(n+p, m+q-1)}+s_{(n+p+1, m+q-2)}+\sum_{i=1}^{q-1} s_{(n, p \mid m+i-1, q-i-1)} \\
& +\sum_{i=1}^{p-1} s_{(n+i+1, p-i-1 \mid m-1, q-1)}+\sum_{j=0}^{p} \sum_{i=0}^{q-2} s_{(n+j+1, p-j \mid m+i-1, q-i-2)} \\
& +\sum_{j=0}^{p-1} \sum_{i=0}^{q-1} s_{(n+j, p-j-1 \mid m+i, q-i-1)}+2 \sum_{j=0}^{p-1} \sum_{i=0}^{q-2} s_{(n+j+1, p-j-1 \mid m+i, q-i-2)} . \tag{20}
\end{align*}
$$

Let us remark that instead of considering S-function multiplication, we can also consider S-function division (i.e. skewing) and derive similar formulae by considering the generating functions for $D\left(s_{\mu}\right)$. These generating functions will be purely functions of $\partial / \partial p_{n}$ and, hence, can be applied directly to the generating function for s_{λ} and crunched together using the standard rules yielding a formula for the skew function $s_{\lambda / \mu}$ in terms of non-standard S-functions, which can then be converted into standard functions using the modification rules.

We can also extend the above considerations to the case of the Hall-Littlewood functions $Q_{\lambda}(x ; t)$. Jing's generalized boson-fermion correspondence [4] allows us to treat the HallLittlewood case on exactly the same footing as the S-function case; by following the above method we have, for example,

$$
\begin{align*}
Q_{(k)} Q_{(n, m)}= & Q_{(k, n, m)}+(1-t) \sum_{p=1}^{n+m} Q_{(k+p, n-p, m)}+(1-t) \sum_{r=1}^{m} Q_{(k+r, n, m-r)} \\
& +(1-t)^{2} \sum_{p=1}^{n+m-1} \sum_{r=1}^{m} Q_{(k+p+r, n-p, m-r)} \tag{21}
\end{align*}
$$

The only caveat to explicit formulae such as (21) is that the non-standard Hall-Littlewood functions occurring on the right-hand side must be modified according to the complicated (compared to the S-function case) rules
$Q_{\{s, r\}}=\left\{\begin{array}{cl}t Q_{\{r, s\}}+\sum_{i=1}^{m}\left(t^{i+1}-t^{i-1}\right) Q_{\{r-i, s+i\}} & r-s=2 m+1 \\ t Q_{\{r, s\}}+\sum_{i=1}^{m-1}\left(t^{i+1}-t^{i-1}\right) Q_{\{r-i, s+i\}} & \\ +\left(t^{m}-t^{m-1}\right) Q_{\{r-m, s+m\}} & r-s=2 m\end{array}\right.$
where by $\{r, s\}$ we mean any partition (...,r,s,..) containing r and s as consecutive elements. In (22) we assume $s<r$ and define $m=\left[\frac{1}{2}(r-s)\right]$.

The author takes great pleasure in thanking P D Jarvis for useful discussions.

References

[1] Jarvis P D and Yung C M 1994 J. Phys. A: Math. Gen. 27903
[2] You Y $1992 \mathrm{~J} . \mathrm{Alg} .145349$
[3] Jing N 1991 J. Alg. 138340
[4] Jing N 1991 Adv. Math. 87226
[5] Baker TH 1994 Symmetric function products and plethysms and the boson-fermion correspondence, UTAS-PHYS-94-12; J. Phys. A: Math Gen. to appear
[6] Jimbo M and Miwa T 1983 Publ. RIMS, Kyoto University 19943
[7] Macdonald I G 1979 Symmetric Functions and Hall Polynomials (Oxford: Oxford University Press)

